Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon.
نویسندگان
چکیده
The characteristics of transmittance and fluorescence changes of 4-(p-aminostyryl)-1-pyridinium dyes in response to voltage-clamp pulses on the squid giant axon were examined. A zwitterionic styryl dye displays transmittance and excitation spectra on the voltage-clamped squid axon with shapes similar to those previously measured on a model membrane system and consistent with a postulated electrochromic mechanism. The speed of the transmittance response is faster than 1.2 microseconds. The size of the fluorescence change is a factor of 40 lower than on the model membrane; this diminution can be rationalized in terms of the background fluorescence from Schwann cells and the nonoptimal geometric arrangement of the axon membrane. When the emission spectrum is dissected from the excitation response, a nonelectrochromic component is found. This component might result from molecular motion during the excited state lifetime. A positively charged dye permeates the axon membrane and displays complex response waveforms dependent on the method of application and the axon holding potential. This contrasts markedly with model membrane results where the behavior of the cationic and zwitterionic dyes were indistinguishable.
منابع مشابه
The compensation of potential changes produced by trivalent erbium ion in squid giant axon with applied potentials.
The transmembrane potential of voltage-clamped squid giant axon is increased to compensate for a reduction in the rate of potassium channel kinetics when artificial seawater with trivalent erbium ion is substituted for artificial seawater. The additional potential required to produce an equivalent rise time is a measure of the potential shift produced by the erbium ions. When the kinetics of K+...
متن کاملDemonstration of Two Stable Potential States in the Squid Giant Axon under Tetraethylammonium Chloride
1. Intracellular injection of tetraethylammonium chloride (TEA) into a giant axon of the squid prolongs the duration of the action potential without changing the resting potential (Fig. 3). The prolongation is sometimes 100-fold or more. 2. The action potential of a giant axon treated with TEA has an initial peak followed by a plateau (Fig. 3). The membrane resistance during the plateau is prac...
متن کاملLiquid Junction and Membrane Potentials of the Squid Giant Axon
The potential differences across the squid giant axon membrane, as measured with a series of microcapillary electrodes filled with concentrations of KCl from 0.03 to 3.0 M or sea water, are consistent with a constant membrane potential and the liquid junction potentials calculated by the Henderson equation. The best value for the mobility of an organic univalent ion, such as isethionate, leads ...
متن کاملAction of External Divalent Ion Reduction on Sodium Movement in the Squid Giant Axon
Voltage clamp measurements of the sodium potential have been made on the resting squid giant axon to study the effect of variations in external divalent ion concentration upon net sodium flux. From these measurements the intracellular sodium concentration and the net sodium inflow were calculated using the Nernst relation and constant activity coefficients. While an axon bathed in artificial se...
متن کاملEffects of Internal and External Ionic Environment on Excitability of Squid Giant Axon
The effects of ten cations and fifteen anions on the excitability of the squid giant axon were studied. The method of intracellular perfusion used in these investigations is described in detail. Empirical criteria were established for evaluating the relative favorability of any salt solution for maintaining the normal excitability of the membrane of the axon. It was found that both cations and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 47 1 شماره
صفحات -
تاریخ انتشار 1985